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Application-speci�c validation of antibodies is a critical prerequisite for their successful
use. Here we introduce an automated framework for characterization and screening
of antibodies against synaptic molecules for high-resolution immuno�uorescence array
tomography (AT). The proposed Synaptic Antibody Characterization Tool (SACT) is
designed to provide an automatic, robust, �exible, and ef�cient tool for antibody
characterization at scale. SACT automatically detects puncta of immuno�uorescence
labeling from candidate antibodies and determines whethera punctum belongs to a
synapse. The molecular composition and size of the target synapses expected to contain
the antigen is determined by the user, based on biological knowledge. Operationally, the
presence of a synapse is de�ned by the colocalization or adjacency of the candidate
antibody punctum to one or more reference antibody puncta. The outputs of SACT
are automatically computed measurements such as target synapse density and target
speci�city ratio that re�ect the sensitivity and speci�city of immunolabeling with a given
candidate antibody. These measurements provide an objective way to characterize and
compare the performance of different antibodies against the same target, and can be
used to objectively select the antibodies best suited for ATand potentially for other
immunolabeling applications.

Keywords: synapse, antibodies, array tomography, synapse d etection, proteometric composition, automatic
algorithms, antibody characterization

1. INTRODUCTION

Antibodies are an indispensable tool for the modern biologist.Their high-a�nity binding to
speci�c target molecules makes it possible to detect, isolate,and manipulate the function of
these molecules. A staggering number of antibodies are available to the research community,
as are many options to make new antibodies. However, since antibodies are biological tools
employed in complex systems, they can be very di�cult to evaluate and to use in a predictable
and reproducible way. A large volume of misleading data has been published based on results
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from antibodies that did not perform as assumed (Anderson
and Grant, 2006; Rhodes and Trimmer, 2006; Baker, 2015).
Recognizing this problem, there has been substantial progress
in optimizing antibody production and validation (Nilsson
et al., 2005; Gong et al., 2016). The importance of establishing
reliable practices for antibody use is now widely accepted, and
many companies are adopting transparent practices for rigorous
antibody validation (Fritschy et al., 1998; Uhlen et al., 2016).
The performance of antibodies, however, is application-speci�c
(Lorincz and Nusser, 2008), and the reliable performance of an
antibody in one application does not guarantee its suitability
for another application. For example, an antibody that yields a
single band on an immunoblot analysis of a tissue homogenate
may prove wholly unsatisfactory for immunohistochemistry on
sections of �xed tissue. Moreover, the same antibody that yields
a robust and speci�c signal in immunohistochemical labeling
of tissue sections prepared under one set of conditions may
yield a weak or noisy signal on comparable samples prepared
under di�erent conditions (Fritschy et al., 1998; Fukaya and
Watanabe, 2000). Therefore, it is up to the individual user to
validate antibodies for other applications and conditions. This
task is especially crucial for applications whose chemistry di�ers
substantially from standard immunoblots.

Array tomography (AT) is a technique that involves
immunolabeling and imaging of serial arrays of ultrathin
(� 70 nm) plastic-embedded tissue slices of aldehyde-�xed
tissue (Micheva and Smith, 2007; Micheva et al., 2010).
While embedding tissue in resin has multiple advantages, the
embedding process requires tissue dehydration, in�ltration in
plastic resin, and subsequent resin polymerization, all of which
can modify the protein structure and chemical state and thus
have a major impact on its immunoreactivity. Identifying
antibodies that yield robust and speci�c immunolabeling of
target proteins in plastic sections is a daunting task. AT is a
high-resolution/high-throughput tool well-suited for thestudy
of synapses in the mammalian brain; unfortunately, �nding
antibodies that selectively label synapses presents additional
challenges, due to their small size, high density, and overall
neurochemical complexity and diversity.

The primary criterion for evaluating antibody performance
for immunohistochemistry is determining whether the labeling
pattern is consistent with the known tissue characteristicsof
its target protein. For an antibody against a synaptic protein,
the immunolabeling must be localized at synapses. Though
conceptually straightforward, the practical evaluation of this
criterion is di�cult and often involves a number of subjective
and time-consuming decisions. A synapse can be unambiguously
identi�ed via electron microscopy, but this approach is too time-
consuming and expensive to be practical for large scale (� 100
antibodies against a target protein) antibody screening tests. A
more e�cient strategy is to double label the same sample with
another antibody already known to localize at synapses, and
measure colocalization (Micheva et al., 2010; Weiler et al., 2014).
While e�ective, this method presents a number of challenges.
Synaptic proteins are typically expressed in high concentrations
at synapses; however, these proteins are also present at other
subcellular locations. Furthermore, synapses display a high level

De�nitions

Candidate Antibody —Antibody being tested for the antigen of interest.
Reference Antibody —A previously validated antibody for an antigen
known to colocalize with or lie adjacent to the candidate antibody's antigen
of interest.
Colocalization —When two or more antibody puncta occupy the same
physical space, as shown in Box B. This is often the case when both
antibodies have presynaptic targets, or both have postsynaptic targets.
Adjacency —When two or more antibody puncta are physically next to each
other in 3D space, as shown in Box A. This may be the case when one
antibody has a presynaptic target and the other a postsynaptic target.
Punctum —A small blob of signal de�ned in 2D or 3D space resulting from
imaging an antibody applied on a tissue. In Box A, one punctum is the green
circle, another is the blue triangle.
Target synapse —A synapse that contains the candidate antibody target,
based on biological knowledge. Operationally, the presence of a synapse is
de�ned by the adjacency (Box A) or colocalization (Box B) of the candidate
antibody punctum to one or more reference antibody puncta. Box C is an
example where the two puncta are neither adjacent nor colocalize, and thus
do not form a synapse.
Target speci�city ratio —The proportion of candidate antibody puncta that
lie at target synapses.

The circle and triangle represent different imaged
antibody puncta detected by two different antibodies.

of protein diversity, so many synapses may completely lack a
particular synaptic protein. Adding to the uncertainty, other
sources of �uorescence can confuse the interpretation of the
images. These sources of “noise” include signal arising from
auto�uorescent tissue constituents such as lipofuscin granules,
blood cells, contamination, and defects such as tissue folds
created during sample processing (Figure 1). The trained eye of
an expert can usually discern the di�erent �uorescence sources
and pick out the speci�c immunolabel, but this is a subjective and
non-quantitative assessment. Furthermore, it can be extremely
time consuming, especially when examining a large number of
antibodies against the same antigen, as may be required during
antibody production (Gong et al., 2016).

Accordingly, there is an urgent need for an e�cient and
robust framework for evaluation of synaptic antibodies. Here, we
introduce the Synaptic Antibody Characterization Tool (SACT),
which provides automatic and quantitative measurements of the
intensity and speci�city of immunolabel and enables the objective
characterization and comparison of multiple synaptic antibodies
for AT at scale. Because the terms used in this paper are speci�c
to the domain, see the `De�nitions' box for further explanation.

2. METHODS

2.1. Overview
The proposed Synaptic Antibody Characterization Tool (SACT)
was developed for the quantitative assessment of antibodies
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FIGURE 1 | Challenges in evaluating synaptic antibodies.Left : Synaptic proteins are found not only at synapses, but also outside of synapses at sites of synthesis
and transport; many synaptic proteins also lie in other subcellular compartments re�ecting other functions (such as transcriptional regulators).Right :
Immuno�uorescence detection of synaptic proteins is confounded by nonspeci�c binding of antibodies, low ef�ciency of target protein detection, �uorescent
contaminants such as dust particles, and tissue auto�uorescence (e.g., lipofuscin granules and blood cells).

against synaptic targets used for AT. It automatically detects
puncta of immuno�uorescence labeling from candidate
antibodies and computes their density, size and size variability.
SACT then determines whether a punctum belongs to a target
synapse or not, by using the previously described probabilistic
synapse detector (Simhal et al., 2017). The presence of a target
synapse is de�ned by the colocalization or adjacency of the
candidate antibody punctum to one or more reference antibody
puncta. This allows the output of two additional measures:
density of target synapses, that is the synapses containing
candidate antibody puncta, and target speci�city ratio, which
is the fraction of candidate antibody puncta that are at the
target synapses. These measurements provide an objective way
to characterize the sensitivity and speci�city of a candidate
antibody and to compare its performance to other antibodies.
The approach is outlined inFigure 2. We should note that
SACT is a framework; additional measurements can be added
and adapted as needed depending on the desired antibody
characterization features.

The data used for validating SACT were derived
from serial sections of plastic-embedded tissue that was
immuno�uorescently labeled with a candidate antibody
alongside one or more reference antibodies, chosen depending
on the antigen. “Candidate antibody” refers to the antibody
whose performance is being evaluated, and “Reference antibody”
refers to an antibody previously validated for AT that marks a
synaptic protein expected to colocalize with or be adjacent to the
target of the candidate antibody. The colocalization or adjacency
of these two (or more) markers indicates the presence of a target
synapse with high probability. The selected area was imaged

on at least 3 consecutive sections, the images were aligned into
stacks (Figure 3), and the performance of the tested antibody
was assessed using SACT.

Importantly, SACT is applicable to a variety of synaptic
antigens with very di�erent distributions, because the user
de�nes the expected molecular composition and size of synapses
where the antigen is present. Furthermore, the algorithm
can be applied to new datasets without creating extensive
manual annotations for each synapse subtype, unlike traditional
classi�ers such as support vector machines and deep learning
used by other synapse detection algorithms (Busse and Smith,
2013; Kreshuk et al., 2014; Collman et al., 2015; Bass et al.,2017;
Fantuzzo et al., 2017).

2.2. Punctum Detection
Immunolabeling for synaptic proteins appears as small blobs or
“puncta,” typically less than 1� m diameter. Because synaptic
structures are generally larger than the typical thickness ofthe
individual sections used in our datasets (70 nm), the puncta
corresponding to proteins that are abundant throughout the
presynaptic or postsynaptic side span several sections and thus
form three-dimensional puncta.

The punctum detection method (Figure 4) is a special case
of the synapse detection method and is adapted from it. It
provides a way to take the input raw IF images from the
microscope and output segmented 3D puncta, without having
to set a threshold unique to every imaging session. The input
is the volumetric image data and a user-de�ned query which
includes the minimum expected 3D punctum size. Requiring
a minimum 3D size minimizes the impact of random specks
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FIGURE 2 | Pipeline of the Synaptic Antibody Characterization Tool (SACT). SACT combines a probabilistic punctum detector (top row) with a probabilistic synapse
detector (Simhal et al., 2017) to determine the properties of the candidate antibody.

FIGURE 3 | Schematic diagram of input datasets.(A) The target protein, gephyrin, is a postsynaptic protein at inhibitory synapses, expected to be adjacent to GAD, a
presynaptic protein abundant at inhibitory synapses. The set of squares represents a stack of images from serial ultrathin sections from mouse neocortex, double
labeled with a gephyrin candidate antibody (brown dots) anda previously validated antibody against GAD (red dots). Thelarge blue blobs represent DAPI, a marker for
cell nuclei.(B) Identical setup, but with Bassoon (a presynaptic protein present in excitatory synapses) as the target protein. In this example, the tissue is labeled with
two reference antibodies to excitatory synapses, the presynaptic protein VGluT1 (purple dots) and the postsynaptic protein PSD-95 (red dots).(C) Different
combinations of puncta are detected on sections (z D 0 to z D 3) through a synapse. The candidate and the reference antibody can be present alongside each other
on the same section (a), they can lie adjacent in the z-direction (b), or they can be adjacent both in the same section and across multiple sections (c).(D) Identical
setup as C with two reference antibodies depicted.

of noise generated during the image acquisition process and
ensures that the immunolabeling is appropriately expressed
across slices. For instance, a target protein that is abundantly

expressed at a synapse (e.g., synapsin) should be detected across
multiple slices at the current working resolution. Therefore, the
presence of a punctum in only one slice likely indicates random
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FIGURE 4 | Automated punctum detection pipeline. This example illustrates the pipeline for antibody characterization. Each processed image shows the
blobs/regions which have met criteria for being a punctum, and each successive panel adds a new requirement; the number ofblobs considered as puncta
decreases accordingly. In the �nal thresholded image, the blobs shown have met the requirement of spanning 3 slices and arecentered on the slice shown. Other
blobs which may appear “missing” are centered either on the slice before or after. The �rst box shows raw single-label immuno�uorescence from a single slice. The
second box is the output of a “foreground probability” step;the intensity value of each pixel encodes the probability itbelongs to the foreground. The third box is the
output of a “2D Punctum Probability” step (each pixel codingthe probability that it belongs to a 2D blob). Pixels in the 4th box display the probability that a voxel
belongs to a blob which spans a minimum number of slices. The �nal thresholded image is shown below. The threshold is established by visual observation; for this
work, the threshold was set to 0.9 for the entire project. Redscale bars represent 5� m.

noise, nonspeci�c labeling or �uorescent contaminant. On the
other hand, there is little reason to assume that less abundant
target proteins or those present at isolated nanodomains within
synapses (e.g., many receptors or ion channels) need to span
multiple slices through a synapse.

The probabilistic punctum detection algorithm involves three
main steps. The �rst step transforms the data from the input raw
IF images to a probability space. To do so, we create a Gaussian
model for the background noise (other distribution models can
be used as well) by assuming the entire input channel to be noise
and the signal itself to be an outlier. For the Gaussian model,we
use the input data's mean intensity value and standard deviation
of the intensity values. The probability of a pixel belonging to
the foreground is one minus the probability of belonging to the
background. Next, we compute the probability that each pixel
belongs to a 2D punctum. To do so, we multiply the probability
values in a region de�ned by the user—the minimum expected
2D blob size. Usually, this is 0.2� 0.2� m, which corresponds to
two pixels by two pixels. Then, we see if these 2D puncta exist
in consecutive z slices. The number of expected slices is part of
the user-de�ned minimum punctum size and is usually 0.14� m,
which corresponds to two slices. This minimum punctum size
criteria reduces the e�ect of random noise. The output of this
third step is a probability map, where the values at each pixel are
the probability it belongs to a 3D punctum.

This probability map is thresholded to segment out 3D puncta
detections. The threshold is established by manual observation
(calibrated, if needed, with a small region of the data). The
threshold was set to 0.9 for all the datasets in this project.
Figure 4shows the output of each step in this punctum detection

pipeline. The initial panel shows a random slice / region of IF
data. Each progressive panel shows a new requirement added,
thus the number of “puncta” decrease accordingly. The last panel
in Figure 4 shows the blobs/regions that have met the criteria
necessary for being a punctum; not every blob shown in the �rst
panel meets those requirements.

2.3. Synapse Detection
Characterizing synaptic antibodies for AT immunolabeling of
brain sections requires detecting synapses. Over the past few
years, several synapse detection methods have been presented
that use traditional machine learning paradigms for detection
(Busse and Smith, 2013; Kreshuk et al., 2014; Collman et al.,
2015; Bass et al., 2017; Fantuzzo et al., 2017). While they
perform well, each requires the user to supply manually-labeled
synapse annotations for training—an often impractical and
tedious requirement for antibody validation, for which manual
annotations would have to be created for each antibody. The
probabilistic synapse detection method introduced inSimhal
et al. (2017)does not require training data for synapse detection,
making it an ideal synapse detector to use for antibody
characterization. This approach extends the probabilistic puncta
detection method to look for colocalization or adjacency between
puncta from di�erent synaptic proteins. For colocalization, the
method looks for signal in a two by two pixel window. For
adjacency, the method looks for blobs in a six by six pixel window.
The algorithm takes as input the immuno�uorscence data from
the candidate and reference antibodies and the expected target
synapse size (together referred to as the “query”) and outputs
a probability map, where the value of each voxel represents the
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probability that it belongs to a synapse. This output can be
thresholded to obtain the putative 3D synapse detections (see
Simhal et al., 2017for a detailed discussion). This algorithm is
very �exible; as detailed below, the queries can be adapted to
di�erent data characteristics and analysis goals, further rendering
it appropriate for antibody validation.

Generally, at least two known synaptic markers are required
to unequivocally detect a synapse; therefore, some of the
datasets contain two reference antibodies for synapse detection
(Figures 3B,D). However, when screening multiple candidate
antibodies, it is important to minimize the time and cost of
the screen. When performed with caution using appropriate
antibody combinations, even a single pre-validated antibody
can generate interpretable synapse-speci�c data. For example,
if the target protein for which an antibody is being evaluated
is localized at the postsynaptic sites of inhibitory synapses,
as is the case with gephyrin (Sheng and Kim, 2011), a
reasonable strategy would be to label the tissue with an antibody
against glutamic acid decarboxylase (GAD), a protein known
to be speci�c to presynaptic terminals of GABAergic inhibitory
synapses for which well-validated antibodies have already been
identi�ed. The corresponding query would then be to look for
synapses containing immunolabeling for gephyrin and GAD
(Figures 3A,C). If the target protein of interest is instead
localized to excitatory synapses, the query may include proteins
speci�c to excitatory synapses such as the postsynaptic protein
PSD-95 (postsynaptic density 95) or the presynaptic protein
VGluT1 (vesicular glutamate transporter 1). This �exibility
makes this framework ideal for antibody characterization.

2.4. SACT Measurements
In order to evaluate an antibody, a series of measurements
are computed; each measurement captures an aspect of the
antibody's performance that would be sought by an expert
observer when manually interacting with the data. Each of
these measurements provides unbiased quantitative information
to help evaluate the intensity, speci�city and sensitivity of
immunolabeling obtained with a given antibody. These include
the density of puncta, and the average punctum volume and
standard deviation for each antibody, as well as the target
synapse density (number of detected target synapses belonging
to the speci�ed subclass per volume), and target speci�city ratio
(the ratio of detected synapses to detected candidate antibody
puncta). These measures provide the user a useful quantitative
assessment of the data.

2.4.1. Detected Density of Puncta
The density of the 3D puncta detected re�ects the biological
properties of the tissue (i.e., the abundance and distribution
of the target protein in the tissue studied), as well as the
intensity and speci�city of the immunolabeling with a given
antibody at the concentration used. If the labeling is unexpectedly
sparse, it suggests that the antibody is insensitive or too highly
diluted. If it is unexpectedly dense, it may indicate that the
antibody is nonspeci�c or binds to many non-synaptic sites such
mitochondria or other “sticky” subcellular sites. To determine the
number of puncta detected in each channel, probability maps,

where the value at every voxel is the probability it belongs toa
3D punctum, are computed as described in the previous section,
and then thresholded1. The process is outlined inFigure 4. A
density value of 0 indicates no puncta were found. The units (in
this work) are in puncta per cubic micrometer. The 3D punctum
density is then calculated:

3D Punctum DensityD
Number of Detected 3D Puncta

Total Volume

2.4.2. Average Punctum Volume
After segmenting the immunolabeling data, the average volume
of puncta and the standard deviation of the punctum volume
are calculated. If the average punctum size is smaller or larger
than expected, it may indicate a lack of e�cacy or speci�city for
immunolabeling with that antibody. If the standard deviation
of punctum volume is large, it may indicate erratic labeling.
Either way, it is important to quantify the size distribution
when comparing multiple candidate antibodies for the same
target. Figure 5 shows an example of an antibody displaying
a very large standard deviation, making it unlikely that the
candidate antibody on the left will serve as a satisfactory marker
for inhibitory (collybistin-positive) synapses. We could compute
fuzzy volumes if we prefer to work with the probability maps
instead of the thresholded data. In this work, the values arein
pixels.

2.4.3. Target Synapse Density
When evaluating a synaptic antibody, it is essential to con�rm
that the immunolabeling localizes at the expected population
of target synapses. Target synapses are operationally de�ned by
the relationship between two or more synaptic protein markers.
This de�nition includes the size (in three dimensions) of each
individual synaptic marker and a de�ned relationship (adjacent
or colocalized) between the markers. Thus, the proposed SACT
incorporates a probabilistic synapse detector, the thresholded
output of which is the number of synapses detected with the
candidate antibody. The target synapse density of a given volume
is computed as

Target Synapse DensityD
Number of Detected Synapses

Total Volume

This measure is useful for evaluating antibodies against targets
with a known distribution at synapses, where the density
of synapses containing the target protein can be estimated.
For example, ubiquitous markers of inhibitory synapses like
gephyrin should be present at the large majority of inhibitory
synapses, and should therefore have a synaptic density in rodent
neocortex on the order of 0.15 synapses per� m3 (Knott et al.,
2002). A computed target synapse density substantially lower
than expected may indicate low sensitivity of the antibody
and/or insu�cient concentration, while a target synapse density
considerably above that expected likely re�ects nonspeci�c (o�-
target) binding of the antibody. In this work, the units used are

1The threshold could be avoided by changing the formula to be the sum of the
probabilities instead of the thresholded number of 3D puncta. This applies to the
other measurements described next as well.
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FIGURE 5 | Example of erratic labeling.Left: Immunolabeling for collybistin (associated with GABAergicsynapses) on a raw IF slice; note the very broad distribution
of sizes for puncta. Clusters of immuno�uorescent label are detected as one large punctum; for antibodies that give such labeling pattern, the average punctum size
will be large and with a large size variance.Right: Relatively “normal” pattern of immunolabeling on a raw IF slice, using a different collybistin candidate antibody. This
difference is automatically quanti�ed by computing the average three dimensional punctum size and size variance. The image on the left has an average punctum size
of 124 pixels and standard deviation of 1,350. The image of the right has an average punctum size of 10 pixels and standard deviation of 89 pixels. Each red scale bar
is 5 � m.

synapses per cubic micrometer. Note, the data is not thresholded
until after searching for adjacency between puncta from di�erent
channels. The threshold for segmenting the resulting probability
maps was set to 0.9 and was held constant for every experiment
in the paper.

2.4.4. Target Speci�city Ratio
The target speci�city ratio (TSR) represents the fraction of
immuno�uorescent puncta of the candidate antibody that are
associated with a target synapse, detected as explained above. TSR
is computed as

TSRD
Number of Detected Synapses

Number of Detected 3D Puncta

Thus, the target speci�city ratio is a measure of how many
times the candidate antibody being evaluated colocalizes with
or is adjacent to the reference antibody compared to how many
times it does not colocalize or lie adjacent with the reference
antibody. TSR values range from 1 (every punctum detected
has an associated detected synapse) to 0 (no detected punctum
has an associated detected synapse); the higher the TSR, the
lower is the magnitude of the nonsynaptic labeling obtained with
that candidate antibody. Interpretation of this measurement will
depend on the speci�c target; some synaptic proteins are almost
exclusively present at synapses (e.g., synapsin), while others are
also found at extrasynaptic locations (e.g., glutamate receptors).
Therefore, the TSR re�ects both the biological distributionof
the target protein, and non-speci�c binding of the candidate
antibody, but when comparing two antibodies against the
same antigen, di�erences in TSR re�ect di�erences in their
speci�city.

3. MATERIALS

3.1. Datasets
The datasets presented here were created from adult mouse
neocortical tissue that was prepared, immunolabeled, and imaged
using standard methods of AT (Micheva et al., 2010; Collman
et al., 2015). We used adult (3 to 4 months old) C57Bl/6J mice
of both sexes for these experiments. Brie�y, the tissue was
chemically �xed using 4% paraformaldehyde in PBS, embedded
in LR White resin, and cut into serial ultrathin sections (70
nm) that were mounted onto coverslips. One of the datasets
from the automated ranking of the candidate monoclonal
antibodies experiments (IRSp53) used tissue prepared in a
di�erent way: chemical �xation with 2% paraformaldehyde
and 2% gluaraldehyde in PBS, followed by freeze-substitution
and embedding in Lowicryl HM20 (Collman et al., 2015).
The sections were labeled with indirect immuno�uorescence
using Alexa conjugated secondary antibodies (highly cross-
adsorbed goat secondary antibodies against the relevant species,
conjugated to Alexa 488, 594 or 647). Only Alexa 488 and 594
were used for the candidate primary antibodies. The di�erence
in the theoretical lateral resolution of these two secondary
antibodies calculated using Abbe's equation is 33 nm, whichhas
little in�uence on our analysis for which the search area for
colocalization is a 200 nm square. The samples were imaged
on an automated wide-�eld �uorescence microscope (Zeiss
AxioImager Z1, Zeiss, Oberkochen, Germany) with a 63x Plan-
Apochromat 1.4 NA oil objective. The resulting images are not
a�ected by many of the commonly occurring optical aberrations
inherent to other immuno�uorescence methods, because array
tomography imaged sections are only 70 nm thick and the
high-NA objective is always used at its design condition at the
immediate contact of specimen and coverslip. While the exact
size of the datasets varies, their general structure is consistent.
Each dataset is composed of multichannel stacks of images from
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serial sections with (for the current data acquisition protocol)
100� 100 nm pixel size and 70 nm slice thickness.

3.2. Primary Antibodies
The antibodies used for the experiments presented here are
listed in Table 1. Some of the antibodies used were tested in
conjunction with screening of monoclonal antibody projectsat
the UC Davis/NIH NeuroMab Facility, consistent with our goal
to facilitate testing of large panels of candidate antibodies in an
e�cient and objective fashion.

3.3. Computational Analysis
The code and data used in this paper can be found at: https://
aksimhal.github.io/SynapseAnalysis/. The website contains
instructions on how to install and use the Synaptic Antibody
Characterization Tool, alongside an example dataset a user can
run right out of the box.

4. RESULTS

4.1. Framework Evaluation
The proposed synaptic antibody characterization and screening
framework was evaluated via three di�erent tasks. Each task
demonstrates an aspect of the framework necessary for validating
synaptic antibodies.

1. Pairwise comparisons.Comparing the performance of two
previously validated antibodies against the same synaptic
reference protein.

2. Concentration comparisons.Comparing the performance of
a single antibody at di�erent concentrations.

3. Evaluating candidate monoclonal antibodies.Comparing
the performance of multiple candidate antibodies against the
same synaptic target protein.

The �rst and second task validate the measurements proposed in
the framework and involve only antibodies previously validated
for array tomography. The third task evaluates the e�cacy
in a “real world” application—characterizing multiple antibody
candidates whose suitability for AT has not yet been determined,
and whose concentration is not known.

4.2. Pairwise Comparisons
When two e�ective antibodies are available for use in a speci�c
application, a common question is “which one is better?”
To answer this question, we created �ve AT datasets, each
with two previously validated antibodies used at concentrations
previously determined to yield optimal immunolabeling. These
antibody pairs were evaluated alongside an antibody for a
di�erent synaptic target protein, thoroughly validated for AT
in prior studies (Micheva et al., 2010; Weiler et al., 2014). An
example slice of each dataset is shown inFigure 6. The higher-
scoring antibody was judged to be the one that had more

TABLE 1 | Antibodies used in this study.

Target protein Host Antibody source RRID*

Bassoon Mouse NeuroMab L124 project RRID:AB_2716712

Cav3.1 Mouse NeuroMab 75-206 RRID:AB_2069421

Cav3.1 Rabbit Synaptic Systems 152 503 RRID:AB_2619850

Collybistin Mouse NeuroMab L120 project RRID:AB_2650452

GAD2 Rabbit Cell Signaling 5843 RRID:AB_10835855

Gephyrin BD Mouse BD Biosciences 612632 RRID:AB_399669

Gephyrin Mouse NeuroMab L106 project RRID:AB_2617120
RRID:AB_617121
RRID:AB_2632414

GluA1 Rabbit Millipore AB1504 RRID:AB_2113602

GluA2 Mouse Millipore MAB397 RRID:AB_2113875

GluA3 Rabbit Abcam ab40845 RRID:AB_776310

Homer1 Mouse NeuroMab L113 project RRID:AB_2629418

IRSp53 Mouse NeuroMab L117 project RRID:AB_2619741

GluN1 Mouse Millipore MAB363 RRID:AB_94946

PSD95 Mouse NeuroMab 75-028 RRID:AB_2292909

PSD95 Rabbit Cell Signaling 3450 RRID:AB_2292883

Synapsin Guinea pig Synaptic Systems 106 004 RRID:AB_1106784

Synapsin Rabbit Cell Signaling 5297 RRID:AB_2616578

VGAT Mouse NeuroMab L118 project RRID:AB_2650550

VGluT1 Guinea pig Millipore AB5905 RRID:AB_2301751

VGluT1 Mouse NeuroMab 75-066 RRID:AB_2187693

*RRID: Research Resource Identi�er. For the NeuroMab projects, the RRID of the antibody �nally selected is listed; this selection was based on other factors in addition to the antibody
performance evaluated using the current method.
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FIGURE 6 | Pairwise comparison of immuno�uorescence on single sections from mouse brain. Each column represents an experiment where two antibodies against
the same target protein (magenta) were evaluated by double labeling with a reference antibody (green). The expert's visually-based preference is marked for each
column. The sections are also labeled with the nuclear stainDAPI (blue). For each experiment, the two images are from thesame section, except for the gephyrin
results, where immunolabeling with the two gephyrin antibodies was performed on different sections. The SACT measurements for these images are shown in
Table 2 . Each image is 16� 18 � m.

puncta associated with the reference antibody (i.e., labelsmore
synapses, true positives) and/or fewer puncta not associated
with the reference antibody (false positives). In a dataset
comparing di�erent PSD-95 antibodies, the PSD95R antibody
had more puncta adjacent to synapsin, without noticeably more
synapsin-unrelated puncta, and was therefore evaluated as better
performing than PSD95M. Cav3.1R had more puncta that are
not adjacent to VGluT1, and also displayed nonspeci�c labeling
of the cell nucleus, and was therefore judged to perform worse
than Cav3.1M. In the VGluT1 dataset, di�erences between the
two antibodies were more subtle, as shown by the measurements
of target synaptic density and target speci�city ratio (seeTable 2).

For each dataset, the minimum expected marker size was
set at 0.2� 0.2 � 0.14� m, corresponding to 2 pixels by
2 pixels by 2 slices. Each dataset was also independently
evaluated and ranked by an expert observer (KDM) blind to
the automatically computed results, based on visual examination
of the immunolabeling. Two measures, target synapse density
and target speci�city ratio, were used to rank the two candidate
antibodies (Table 2). When the antibodies are used at their
optimal concentration, a higher measured target synapse density
implies higher sensitivity of the antibody (since it detectsthe
target protein at more synapses). A higher target speci�city ratio
(i.e., a higher proportion of detected immunolabeled puncta
that are associated with synapses) indicates higher selectivity of
the antibody for the protein of interest. The expert-preferred
VGluT1 and PSD-95 antibodies scored higher on both sensitivity
(target synapse density) and speci�city (TSR), while others scored
higher on only one of these measures. For both Cav3.1 and
synapsin, the higher-scoring antibodies had higher TSR but
gave target synapse densities comparable to the other antibody.

In the case of gephyrin, both antibodies had similar TSR, but
the expert-picked antibody had a higher target synapse density.
These results illustrate the importance of using complementary
measurements for antibody evaluation. The proposed framework
provides multiple objective computations, and the user can pick
the most suitable one(s) for a given task.

To evaluate the robustness of the framework, the same
comparisons were performed using queries with smaller and
larger minimum synapse size requirements (requiring puncta
to span only one slice vs three slices), as shown inFigure 7.
All queries gave consistent results for all �ve antibody pairs,
except for Query 1, which de�ned a synapse as spanning
only one slice; in two out of the �ve cases, Query 1
failed to unequivocally identify the otherwise highest scoring
antibody. Thus, the use of even limited three-dimensional
information from immunolabeling on serial sections enabled
robust quanti�cation of antibody performance.

This experiment illustrates the power and breadth of
the proposed method. The queries can be designed by the
user to take into account resolution, synapse type, and
antibody binding target. Multiple queries can be run, and the
antibody performance can be objectively evaluated with multiple
measurements.

4.3. Concentration Comparisons
The optimal concentration of an antibody, which is dependent
on both its binding a�nity for the target protein and the
abundance of the target protein in the particular sample,
must be determined experimentally. Too high a concentration
of the antibody will lead to high background labeling (false
positives), while too low a concentration will lead to sparse
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TABLE 2 | Results from pairwise antibody comparisons.

Target protein Candidate
antibodies

Reference
antibody

Punctum density
(mm3)

Average punctum size /
standard deviation (pixels)

Target synapse
density ( mm3)

Target speci�city
ratio

Synapsin Synapsin GP PSD-95 2.01 15.9/ 59.4 0.55 0.275

Synapsin R 1.09 27.0 / 48.6 0.5 0.457

VGluT1 VGluT1GP Synapsin 1.54 12.1/ 30.2 0.44 0.283

VGluT1M 1.27 11.0/ 22.4 0.33 0.257

PSD-95 PSD-95M Synapsin 0.95 10.7 / 101.7 0.54 0.568

PSD-95R 1.14 25.4 / 39.9 0.79 0.691

Gephyrin GephyrinL106 GAD 0.72 12.5 / 94.1 0.13 0.181

GephyrinBD 0.46 17.9 / 263.1 0.08 0.175

Cav 3.1 Cav3.1M VGluT1 0.58 7.4 / 14.0 0.33 0.568

Cav3.1R 1.22 8.6 / 52.3 0.33 0.271

Punctum density, average punctum size, and standard deviation of punctum size were all computed for each antibody tested. The names in bold in the second column represent the
antibodies preferred by an expert based on visual examination. In eachcase, the measures automatically computed by the framework agree with the expert observer's judgement.

FIGURE 7 | Impact of punctum size requirements on antibody comparisons. Black dots represent the higher scoring antibody. Each scatter plot shows the results of
the comparison of two candidate antibodies against the samereference protein while varying the minimum synapse size requirements (queries numbered 1 through
4). The following are the minimum punctum size for the four queries. Query 1 (blue): candidate antibody—0.2� 0.2 � 0.07� m,
reference antibody—0.2� 0.2 � 0.07� m. Query 2 (orange): candidate antibody—0.2� 0.2 � 0.14� m, reference antibody—0.2� 0.2 � 0.07� m. Query 3 (green):
candidate antibody—0.2� 0.2 � 0.14� m, reference antibody—0.2� 0.2 � 0.14� m. Query 4 (red): candidate antibody—0.2� 0.2 � 0.21� m, reference
antibody—0.2� 0.2 � 0.07� m. All queries gave consistent results for all �ve antibody pairs, except for Query 1 (see text for details). A TSR value of greater than one is
an artifact of thresholding incorrectly splitting a punctum into two, it is remedied with simple morphological operations.

labeling (false negatives). The proposed framework quanti�es
the e�ects of antibody concentration on immunolabeling of
AT sections, as evaluated by the target synapse density and
target speci�city ratio measures. As the antibody concentration
decreases, the target synapse density is also expected to
decrease.

For this experiment, datasets were generated from a series
of dilutions, as shown inTable 3 and Figure 8. For each
dataset except GluN1 the minimum expected punctum size
was 0.2� 0.2 � 0.14� m, corresponding to 2 pixels by 2
pixels by 2 slices. The minimum punctum size for GluN1 was
(0.2 � 0.2 � 0.07� m) due to inaccuracies in the alignment
of this dataset that caused inconsistencies in the positions

of synapses on adjacent slices (the proposed algorithm can
be easily adapted to challenges in the data by changing the
query).

The �rst dataset tested the e�ect of a 10-fold change in
concentration of an antibody against the general presynaptic
marker synapsin, imaged in conjunction with immunolabeling
for VGluT1, a presynaptic marker of excitatory synapses. The
remaining datasets tested four sequential 5-fold concentration
changes on immunolabeling with di�erent glutamate receptor
antibodies, and were evaluated against immunolabeling with
antibodies for general presynaptic markers (synapsin) or markers
of glutamatergic synapses (VGluT1). Synapsin, previously
identi�ed as a robust synaptic antibody for AT, performed
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TABLE 3 | Five antibodies evaluated at different concentrations.

Target protein Candidate antibodies Reference
antibody

Punctum Density
(mm3)

Average Punctum Size /
standard deviation (pixels)

Target Synapse
Density ( mm3)

Target
speci�city ratio

Synapsin SynCS 1:100 VGluT1 1.23 41.6 / 133.6 0.84 0.68

SynCS 1:1000 1.31 35.9 / 95.9 0.83 0.63

GluA1 GluR1 1:25 VGluT1 0.62 7.9 / 51.8 0.12 0.19

GluR1 1:125 0.43 9.5 / 41.4 0.08 0.18

GluR1 1:625 0.18 19.3 / 180.9 0.05 0.27

GluR1 1:3125 0.13 38.7 / 1117.6 0.03 0.21

GluA2 GluR2 1:25 Synapsin 0.89 10.5 / 62.3 0.45 0.51

GluR2 1:125 0.46 13.9 / 29.5 0.30 0.66

GluR2 1:625 0.27 15.5 / 85.8 0.17 0.64

GluR2 1:3125 0.23 15.9 / 103.8 0.13 0.57

GluA3 GluR3 1:25 VGluT1 1.99 6.5 / 11.8 0.42 0.21

GluR3 1:125 0.81 8.4 / 16.4 0.23 0.29

GluR3 1:625 0.26 10.8 / 23.5 0.07 0.28

GluR3 1:3125 0.17 20.6 / 154.1 0.05 0.26

GluN1 GluN1 1:25 VGluT1 1 37.2 / 1541.0 0.72 0.72

GluN1 1:125 0.88 17.8 / 208.2 0.63 0.72

GluN1 1:625 0.58 22.0 / 748.9 0.37 0.64

GluN1 1:3125 0.64 9.8 / 54.5 0.39 0.62

In all experiments, a reference presynaptic antibody was included at its optimal concentration. The detected target synapse density decreases as the antibody concentration decreases.
For GluN1, the background noise model changed to a Rayleigh distributionto better suit that speci�c dataset. All other datasets used the a Gaussian modelfor the background. See
Simhal et al. (2017)for a detailed discussion.

FIGURE 8 | Changes in target synapse density (in synapses per cubic micrometers) and target speci�city ratio as a function of antibody concentration. Each plot
shows the target synapse density and target speci�city ratioat different concentrations of the same antibody.

equally well over the 10-fold concentration range as evaluated
by both the target synapse density and target speci�city ratio
measurements. For each of the glutamate receptor antibodies, the
measured target synapse density value decreased with increasing
dilutions, as expected, while the target speci�city value showed
no consistent changes. Using the framework, we estimated that
the optimal working range of the glutamate receptor antibodies
tested lies within a dilution range of 1:25 to 1:125; further

dilutions led to missing too many synapses without a substantial
improvement in target speci�city.

4.4. Automated Ranking of Candidate
Monoclonal Antibodies
The generation of monoclonal antibodies begins with a
high-throughput screening procedure that identi�es numerous
candidate antibodies, all of which must then be further
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investigated. Since only a small fraction of these candidate
antibodies will exhibit robust and speci�c immunoreactivity in
any given condition, it is important to screen as many candidate
antibodies as possible for a given application. While some
common antibody screens have been e�ectively automated (e.g.,
ELISA screens), screening on plastic sections from mammalian
brain for antibodies that immunolabel speci�c populations
of synapses must still be performed and analyzed manually
by an expert observer, a di�cult and labor-intensive process.
Reasoning that the framework proposed here might facilitate
the analysis of large-scale screens on tissue sections, we tested
its performance by screening candidate monoclonal antibodies
against synaptic target proteins generated at the UC Davis/NIH
NeuroMab facility. This procedure is especially challenging
because the concentration of antibody in hybridoma tissue
culture supernatants is unknown, so immunolabeling must
be performed at antibody concentrations that may di�er for
di�erent candidate antibodies, and these concentrations may not
be optimal.

Arrays from mouse neocortex were prepared using
standard AT methods. For each dataset, we imaged sections
immunolabeled with a set of candidate antibodies against the
same target protein. For each dataset, at least two antibodies
were applied: the candidate antibody raised against the target
protein of interest and a validated reference antibody at its
optimal concentration. The ranking of candidate antibodies
was determined based on two measurements provided by the
framework: target synapse density and the target speci�city
ratio. The target speci�city ratio was the deciding factor inmost
cases. Target synapse density was used to exclude candidate
antibodies with unreasonably high values based on previous
biological knowledge: excitatory synapses are expected to have
a density of� 1 per � m3, and the inhibitory synapses a density
of � 0.15 per� m3 (Calverley and Jones, 1987; Schüz and Palm,
1989; Knott et al., 2002). Each dataset was blindly evaluated and
ranked by an expert observer, based on visual examination of
the images. Screening of the Bassoon candidate antibodies was
performed in two rounds; the second round included only those
candidates identi�ed as best or unclear in the �rst round. These
experiments addressed several questions: 1) Can the framework
be used to correctly rank the performance of multiple candidate
antibodies? 2) What is the minimum number of reference
antibodies required to accomplish this? and 3) What is the
optimal minimum punctum size needed? Six datasets, ranging
from 4 to 19 di�erent candidate antibodies each, were analyzed.

4.4.1. Can the Framework Correctly Rank the
Performance of Multiple Candidate Antibodies?
Analysis of the six datasets demonstrated an excellent
correspondence between the framework's ranking and expert
evaluation of candidate antibody performance. The results are
summarized inTable 4 and Figure 9. The computed measures
not only allow the relative ranking of antibody performance,
but also give an indication of the absolute utility of an antibody.
For example, in the case of IRSp53, the two expert-preferred
antibodies were ranked higher by the SACT than the other
antibodies. However, the SACT measurements indicated that

overall none of the IRSp53 antibodies tested were performing
su�ciently well, because the TSR was extremely low (< 0.03).

4.4.2. What Is the Minimum Number of Reference
Antibodies?
The previous experiments with pairwise or concentration
comparisons were performed using only one reference antibody.
In those cases, the tested antibodies were already known to
recognize their target in plastic sections; it is therefore reasonable
to assume that the combination of one reference synaptic
antibody with one tested synaptic antibody will generate synapse-
speci�c data. To verify whether an additional reference antibody
may o�er an advantage when screening new antibodies, two
of the datasets included both presynaptic and postsynaptic
reference antibodies. In these two datasets, the performance
of the query containing an additional reference antibody was
compared to the standard single reference antibody query used
in the previous experiments. In both cases, the results of the
two queries were very similar (compareFigure 10with Figure 9),
suggesting that inclusion of a second reference synaptic antibody
is unnecessary for the purpose of screening large sets of candidate
antibodies.

4.4.3. What Is the Optimal Minimum Punctum Size?
The pairwise antibody comparison experiments showed that
the results were not a�ected by the stringency of the query,
except in cases when the minimum puncta requirements were
too permissive (smallest synapse size: labels present on 1 slice).
Therefore, to screen multiple candidate antibodies, we generally
chose queries of medium stringency, requiring the labels tobe
present in two consecutive slices. This strategy worked very
well for candidate antibodies directed against abundant synaptic
proteins (gephyrin, Homer1, IRSp53, VGAT, collybistin). In
contrast, the permissive query, which required the labels tobe
present on only one section, gave inconclusive results in most of
these cases (Figure 11). The �rst round of screening for Bassoon
antibodies was an exception, because it yielded clearer results
with a one-section query. This is likely due to the wide variations
in concentration of the candidate antibodies present in the tissue
culture supernatants used for screening, many of which required
subsequent dilution, as performed in the second round of testing.
In this second round with adjusted concentrations, the two-
section query performed well, as seen for the other abundant
synaptic target proteins. These experiments suggest that it isbest
to start an antibody evaluation using a query that requires the
labels to be present in two sections. The top-ranking antibodies
based on such a query can then be selected and visually examined
by experts to con�rm their performance.

5. DISCUSSION

The present report introduces an e�ective framework for
automated characterization and screening of antibodies for AT.
The framework provides a number of automatically computed
characteristics, such as target synapse density and target
speci�city ratio, that re�ect the sensitivity and speci�city of
immunolabeling with a given antibody. Taken together, these
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TABLE 4 | Summary of candidate antibody comparisons.

Target protein Reference
antibodies

Total no. of candidate
antibodies tested

No. of good candidates
chosen by expert

No. of good
candidates

chosen by SACT

SACT false
negatives

SACT false
positives

Gephyrin GAD 7 5 4 1 0

Homer PSD95 4 1 1 0 0

IRSP53 PSD-95, VGluT1 12 2 2 0 0 (C1 unclear)

VGAT GAD 17 4 4 0 0 (C2 unclear)

Collybistin GAD 19 6 6 0 1

Bassoon 1st exp. Synapsin 19 4 4 0 0 (C1 unclear)

Bassoon 2nd exp. VGluT1, PSD-95 10 5 5 0 0

Multiple candidate antibodies against the target protein were ranked using measurements from the proposed SACT. The candidate antibodies were independently evaluated by visual
inspection of the immuno�uorescence images. For each target protein, the reference antibodies were chosen according to the known characteristics of synapses expressing the target
protein. Without an objective and automated tool to quantify antibody performance, all antibody evaluations are subjective (as is the standard today). The framework proposed in this
work is a �rst step toward having synaptic antibody quanti�cation be a routinepart of antibody evaluation.

FIGURE 9 | Comparison of multiple candidate antibodies. Each scatterplot shows the computed target synapse density and target speci�city ratio of multiple
candidate antibodies, with the best-ranking candidates circled. Expert ranking is color-coded: green—best, orange—unclear, red—fail. The outlier in the VGAT scatter
plot was not included in the best candidate antibodies selection, because of the abnormally high synaptic density (0.7 per � m3 compared to target max density of
0.15 per � m3). Screening of the Bassoon project was performed in 2 rounds: the candidate antibodies identi�ed as best or unclear in the�rst round were screened
again with adjusted concentrations.

FIGURE 10 | Comparison of multiple candidate antibodies using two reference synaptic antibodies.Left: Bassoon with PSD-95 and VGluT1.Right: IRSp53 with
PSD-95 and VGluT1. Expert ranking is color coded: green—best, orange—unclear, red—fail. Compare withFigure 9 .

computed characteristics provide an objective way to characterize
and compare the performance of di�erent antibodies against the
same target, simplifying the process for selecting antibodies best
suited for AT. When evaluating multiple candidate antibodies,
this represents an e�cient method to identify a small number

of promising antibodies for further evaluation, which includes
assays in knockout mouse and other relevant controls (Gong
et al., 2016).

The Synaptic Antibody Characterization Tool (SACT, the
implementation of the framework) is designed to be a �exible
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FIGURE 11 | Comparison of multiple candidate antibodies. These plots compare multiple candidate antibodies using an alternativequery requiring the puncta to be
present on only 1 slice, instead of 2 as inFigure 9 . Each scatter plot shows the target synapse density and target speci�city ratio of multiple candidate antibodies
against the same target protein. Expert ranking is color coded: green—best, orange—unclear, red—fail. In many of these cases (gephyrin, VGAT, collybistin), the more
permissive 1-slice query does not allow correct selection of the best performing candidate antibodies.

tool for antibody screening. Because it is query-based, it allows
the user to de�ne the molecular composition and size of synapses
expected to contain the antigen. This �exibility is advantageous
for synaptic antibody screening because the query can be
designed to focus on di�erent synapse subtypes, depending on
prior biological knowledge (e.g., what combinations of proteins
are likely to be present, and where the antibody target is
expected to be located). Its inherent �exibility should allow
this approach to be used also to validate antibodies that target
other subcellular structures, ranging from the nodes of Ranvier
on myelinated axons, to mitochondria, to histone markers
in the nucleus. The method works with a wide selection of
reference antibodies, which need not colocalize with the tested
antibody. For example, antibodies to gephyrin and collybistin,
both postsynaptic proteins, were evaluated using the presynaptic
marker GAD as reference. The �exibility in reference antibody
selection enables users to optimize the use of their available
antibody stocks. With further practical experience we anticipate
that a restricted group of well-characterized antibodies will be
adopted as controls for each target category.

Our experiments demonstrate that SACT provides a robust
method for antibody screening, ranking antibodies based on
quantitative measures of their performance. In the pairwise
comparisons of antibodies, there was 100% agreement between
the expert ranking and the automated antibody ranking based
on target synapse density and target selectivity ratio. Variations
in the size requirement did not a�ect the ranking, as long
as synapse detection was based on more than one slice. Even
when a synapse was required to be present on only one slice,
performance was only modestly degraded, such that the outcome

measures for some antibody pairs were ambiguous. The present
approach accommodates variations in antibody concentration,
as demonstrated by the experiments with multiple candidate
antibodies from monoclonal antibody projects, which showed
a high correlation between the ranking by algorithm and by
expert evaluation of candidate antibody performance in all six
datasets, even though the concentration of antibodies in the
hybridoma tissue culture supernatants used for screening was
unknown and intrinsically variable. This insensitivity to antibody
concentration is very important in practice when evaluating
multiple antibodies; by eliminating the need for immunolabeling
with series of antibody dilutions, it substantially reduces the
amount of work involved.

There are some limitations to the use of the proposed
framework for antibody validation. This is not a stand-
alone tool for generic antibody validation; it is designed
to speci�cally address the performance of the antibody for
immuno�uorescence AT, and must be used along with other
tests and controls. For example, SACT does not test for cross-
reactivity with other proteins. A second limitation is that this
approach requires prior knowledge of the expected distribution
of the antigen (or some other characteristic to use for reference),
especially if it is found only in a small population of synapses. In
such cases it will be important to ensure that the tissue sample
used for immunolabeling contains such synapses at a reasonable
density and/or includes a reference marker to independently
identify this population.

A number of technical issues can interfere with performance.
Proper alignment of the sections in the imaged series is
required to ensure that position of synapses is consistent on
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adjacent sections. In one of the concentration comparison
experiments with GluN1, inaccuracies in the alignment led to
poor performance of the algorithm when using the standard size
requirement of a synapse to be present on at least two consecutive
sections. In this case, a one-slice size requirement was successfully
used, but we show that this approach will not always work.
To fully bene�t from the advantages of using three-dimensional
information from multiple serial slices, one must ensure that the
datasets are well aligned. Another technical issue to consider is
possible bleed-through during the �uorescent imaging, which
can cause the false impression of colocalization between the
tested and reference antibodies.

When carefully planned and executed to avoid pitfalls,
the automated framework described here can be used to
identify and characterize antibodies against a wide assortment
of synaptic target proteins that yield robust and speci�c
immunolabeling in plastic sections of brain tissue. This is
particularly important because the nature of synaptic processing
is still poorly understood, and many basic questions remain.
For example, how many di�erent types of synapse exist? How
do these di�erent types vary over di�erent brain areas? How
does their distribution change over time? With experience?
Under pathological conditions? For questions of this nature,
it is important to objectively assess a large number of
individual synapses, and a large number of di�erent molecules
at each synapse, as can be done using AT. Identifying
reliable synaptic antibodies for AT will remove a major
limitation for such studies and allow a better understanding of
synapses.
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